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Various signal processing techniques have been proposed to im- in the case of white Gaussian noise. As an example, it is
prove spectral estimation of closely spaced sinusoids in the pres- reasonable to assume that phases are equal. In addition, the
ence of noise. This paper exploits frequency prior knowledge infor- number of sinusoids representing a metabolite, amplitude
mation to extract single peaks in magnetic resonance spectra, cor- ratios, and/or frequency differences between certain spectral
responding to metabolites of interest, by means of a highly selective peaks, and possibly some relationships between damping
finite impulse response filter. Thereafter the estimation of the pa-

factors, may be known. Imposing such relations on the modelrameters of the peaks is carried out using a singular-value-decom-
function usually yields rather beneficial effects on both preci-position-based method known as HTLS. The new technique im-
sion and the threshold signal-to-noise ratio. An overview isproves the performance of fully automated magnetic resonance
given in (14) .spectroscopy data quantification when frequency prior knowledge

All these methods have the drawback that the entire MRSis available. q 1998 Academic Press

signal needs to be quantified. Often, only selected peaks in
the MRS spectrum, corresponding to metabolites of interest,

INTRODUCTION need to be quantified. Moreover, parts in the MR spectrum
may have an unknown model function, such as those corre-

For medical diagnosis or biochemical analysis accurate sponding to lipids or water, which hampers the accurate
and efficient quantification of magnetic resonance spectros- quantification of spectral peaks of interest in the neighbor-
copy (MRS) signals is of utmost importance. MRS signals, hood. Especially when these single peaks of interest strongly
however, are often characterized by a low signal-to-noise overlap with peaks characterized by an unknown shape, little
ratio and overlapping peaks. In these circumstances simple prior knowledge, and/or low signal-to-noise ratio, the above
signal processing algorithms like numerical integration are methods may fail to quantify these peaks of interest success-
not adequate. This work pertains to time domain fitting since fully, even if prior knowledge is included. Therefore, we
this is less vulnerable to missing data. propose here a new filtering technique which should be ap-

Noninteractive methods exist that are noniterative and plied to the MR signal prior to quantification. The idea is
computationally efficient and which can be fully automatic. to isolate the single peak of interest by means of a highly
Among this class of methods are the algorithms based on selective finite impulse response (FIR) filter and create a
the Kumaresan–Tufts linear prediction (LP) method (1, 2) new MRS signal in which the only peak of interest is greatly
combined with the singular value decomposition (SVD) (3– enhanced while the other peaks are suppressed as much as
5) . The state-space approach of Kung et al. (6) combined possible. Assuming that the frequency of the peak of interest
with SVD (called HSVD (7)) is a more efficient and a more is known, this can be done using a very selective filter with
accurate alternative to the LP methods as it circumvents maximum gain at the frequency of the sinusoid under consid-
the polynomial rooting and root selection. Rapid and more eration (15) . However, these filters, known as notch filters,
accurate variants of the state-space algorithms have been are usually infinite impulse response (IIR) filters and as a
recently proposed (8–11) , but the limitations to the imposi- result the filtered signal may be distorted by the presence of
tion of prior knowledge about model function parameters artifact components due to the poles of the IIR filter. This
are inherent to these types of methods. On the other hand, undesirable effect will be even more pronounced when one
interactive methods exist that are iterative, with more user or more poles of the IIR filter lie in the vicinity of the
involvement, and computationally less efficient, but that do sinusoid under consideration. For the above reasons we pro-
allow inclusion of prior knowledge (12, 13) . The algorithms pose to use FIR filters to extract the wanted sinusoid. As a
fit the data to the nonlinear model function in a least squares matter of fact these filters do not generate any artifacts which

could compromise the estimation of the damping, the ampli-sense, leading to maximum likelihood parameter estimates
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239FREQUENCY-SELECTIVE MRS DATA QUANTIFICATION

tude, and the phase. Although very important, the frequency
prior knowledge assumption is rather weak because it can
be obtained by a simple peak picking operation on the fast
Fourier transform (FFT) of the data under consideration. In
other words, the frequency of the peak of interest is estimated
by just looking at the FFT of the raw signal.

Once the peak of interest has been isolated, any of the
above-described MRS quantification algorithms can be used
in order to estimate the rest of its parameters, i.e., amplitude,
damping, and phase. If no prior knowledge is available, or
for fast automatic MRS signal processing, a noninteractive
method, such as HTLS (8) , is recommended and used here
as illustration. However, if additional prior knowledge is
available, the proposed filter can better be combined with
nonlinear least squares optimization techniques, such as
VARPRO (13) or AMARES (12) , which are able to include
all available prior knowledge in the quantification of the

FIG. 1. Frequency response of the FIR filter.filtered signal.
Finally, we note that other filtering techniques have been

proposed for selecting parts of the MR spectrum (16–18) .
Although these filters improve resolution when the selected tive FIR filter generating an output data vector X̂ . The trans-
peaks are far enough from the rest of the spectrum, they all fer function of the filter H(z) in the z-domain is given by
fail to isolate a single peak which strongly overlaps with its
neighbors.

H(z) Å ∑
p

nÅ0

hnz0nq . [2]The paper is organized as follows. In the first part, the
filter is presented and combined with the parameter estima-
tion method HTLS. This new algorithm, called FI-HTLS, is Typical values for the parameters are h Å 0.7, q Å 5, and
then applied to a simulated MRS signal, as well as an in p Å 10. The n th element of the output vector X̂ is given by
vivo MRS signal, and is shown to improve quantification of
the selected peak of interest.

xP n Å ∑
p

kÅ0

hkxn0kq , n Å pq , . . . , N 0 1. [3]

PARAMETER ESTIMATION ALGORITHM
The frequency response of the above filter has five peaks
located at normalized frequencies 0, 0.4, 0.8, 00.4, and 00.8Data Preprocessing
as shown in Fig. 1. In order to enhance the peak of interest
it is first shifted at normalized frequency 0.4. This is doneConsider a vector X Å [x0 , . . . , xN01]T of N data points
by multiplying the signal X with a pure exponential functionof an experimental MRS signal. We are interested in estimat-
of the form e jp (0.40 fpeak ) , where fpeak stands for the normalizeding the exact signal from the noisy observations X . In model-
frequency of the peak of interest. The shifted signal is filtereding MRS free induction decay signals, we assume that the
through the filter defined in [3] and its output is shifted backN noise-free data points xa n of Xa are modeled as a sum of K
by simple multiplication with e jp (00.4/ fpeak ) and stored in X̂ .exponentially damped sinusoids, i.e.,
Note that in order to avoid distortions due to the initial
conditions of the filtering process it is advisable to filter the
signal backward (from the end to the beginning). Thus,xa n Å ∑

K

kÅ1

ckz
tn
k Å ∑

K

kÅ1

(ake
jfk )e (0dk/j2p fk )nDt ,

distortion due to the initial conditions occurs only at the end
of the signal which subsequently can be omitted since it

n Å 0, . . . , N 0 1, [1] contains just noise (all the damped sinusoids have died out) .

Subspace-Based Signal Estimation Algorithm
where K is called the model order, j Å

√
01, and Dt is the

sampling interval. Knowing the frequencies, the objective is The signal parameters are extracted from the filtered data
vector X̂ by means of an appropriate subspace-based signalto estimate the damping factors dk , amplitudes ak , and phases

fk , k Å 1, . . . , K . estimation algorithm. For example, in exponential data mod-
eling the signal parameters dk , ak , and fk in [1] can beThe observed data vector X is first filtered through a selec-
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estimated through linear prediction techniques (see, e.g.,
(1, 3, 4, 14)) . A computationally more efficient and more
precise alternative is Kung’s method (6) , known as HSVD
in NMR (7, 14) , which circumvents polynomial rooting and
root selection by representing the signal in a state-space
model setting. An improved variant, based on total least
squares (TLS) and called HTLS, is presented in (3) . For
the completeness of this paper these algorithms are outlined
below.

Step 1. Compute the singular value decomposition of the
LO 1 M̂ Hankel structured data matrix Ĥ , i.e.,

HO L
O
1M

O

Å

xP 0 xP 1 ??? xP MO 01

xP 1 xP 2 ??? xP M
O

: : : :

xP LO 01 xP LO ??? xP N01

Å UO SO VO H , [4]

FIG. 2. Fast Fourier transform of the simulated 31P NMR signal.where LO / M̂ 0 1 Å N , Û and V̂ are orthogonal, and SO is
diagonal containing the singular values of Ĥ in decreasing
order of magnitude. Truncate Ĥ to a rank K matrix ĤK :

mates ẑk) . Ĉ yields the complex-valued linear parameter
estimates ĉ k Å aP ke

jfO k which contain the amplitude and phaseHO K Å UO KSO KVO H
K .

estimates âk and fO k .
Step 4. Amplitude and phase correction. It is known that

ÛK and V̂ K are, respectively, the first K columns of Û and frequencies and dampings of damped sinusoids are preserved
V̂ . SO K is the K 1 K upper-left submatrix of SO . In order to at the output of FIR filters. However, this is not the case for
obtain the best parameter accuracy Ĥ (and ĤK) is as square their amplitudes and phases. As a matter of fact amplitudes
as possible, i.e., LO É M̂ (although the minimum is very and phases have to be adjusted according to the formulas
flat) .

Step 2. Compute the solution Q̂ of the (incompatible)
gk Å

(h 1/qe0dk / fs ) q (p/1)e j2p(p/1) 0 1
(h 1/qe0dk / fs ) qe j2p 0 1

[6]set,

ak Å aP k(p / 1)/ \gk\ [7]UO KQ É UOU K , [5]

fk Å fO k 0 360[angle(gk)] /2p, [8]
where UOU K (resp., ÛK) are derived from ÛK by omitting its
first (resp., last) row. where fs is the sampling frequency and âk and fO k are the

Solving [5] with least squares (LS) results in Kung’s amplitude and phase estimates of the k th peak based on the
algorithm (6) , called HSVD here. Computing instead the filtered signal. The true estimates for the amplitude ak and
TLS solution Q̂ of [5] results in an improved variant (3) , the phase fk of the k th peak are given from the above equa-
called HTLS here. tions. Note that the parameter p of the FIR filter controls its

Once Q is estimated its eigenvalues lO k give the signal sharpness. A large p implies a sharp filter which in turn
pole estimates, i.e., provides a narrowband output signal. Subsequently one

might consider that this is a favorable scenario for HTLS
to estimate the parameters of the signal very accurately.lO k Å zP k Å e (0dO k/j2p fO k )D t , k Å 1, . . . , K ,
Nevertheless the above formulas imply that the correct esti-
mates of the amplitude and the phase are related exponen-

yielding the desired damping factor estimates dO k .
tially to the parameter p . Therefore errors in the estimation

Step 3. Finally, compute the LS solution Ĉ Å [ ĉ1 , . . . ,
of the damping dk , even if they are small, will be amplified

ĉ K]T of the set
by the use of a large value of p . Obviously there is a tradeoff
to be found between the size of p and the accuracy of the

AN1KC É XO N11 estimates of the amplitude and phase. It was found experi-
mentally that p Å 10 is an optimal choice for the sharpness
of the FIR filter.obtained by fitting the N model equations [1] to the data

points x̂n (where the zk are replaced by the computed esti- The fact that a selective filter is used ensures that all
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TABLE 1 formance has been compared to that of HTLS. Test signals
Number of Good Runs for 100 Trials consist of N data points which are exactly modeled by the

function in expression [1]. These data points are perturbed
Peak 1 Peak 2 Peak 3 Peak 8 by white Gaussian noise whose real and imaginary compo-

Method sn Å 20 sn Å 20 sn Å 20 sn Å 60
nents have standard deviation sn . For each sn relative root
mean-squared error (RMSE) estimates of the signal parame-HTLS 69 96 63 60

FI-HTLS 96 100 90 65 ters have been computed using 100 noise realizations (ex-
cluding failures) . A failure occurs if the peak is not resolved
within a frequency interval 086 { 8.6, 070 { 7.3, 054 {
8.6, 152 { 3.2, 168 { 3.2, 292 { 3.4, 308 { 3.6, 360 {

information unrelated to the peak under consideration is dis- 7.4, 440 { 5.5, 490 { 2.3, 530 { 7.7 Hz, for peaks 1 to
carded. In theory, after filtering there is only one exponential 11, respectively. The derivation of these intervals is based
left in the signal. However, the order K is chosen somewhat on Cramer–Rao lower bounds considerations. The failure
higher than two to accommodate residual energy. In sum- rate is computed to indicate how many times an algorithm
mary, the algorithm which is proposed in this paper and fails to resolve a peak within these specified intervals.
which is called FI-HTLS is outlined as follows. An 11th order model function representing a typical 31P

NMR signal, and shown in Fig. 2, is considered. The numberALGORITHM FI-HTLS. Given the data vector X Å [x0 ,
of samples is equal to N Å 256. In this example, peaks 1x1 , rrrxN01] of N observations and the order K of the
and 3 (from the left) are difficult to estimate because theyfiltered signal
strongly overlap with peak 2 while their amplitudes are low.

• Perform the filtering operation using the FIR filter de- It is therefore advisable to focus attention on the performance
fined by (2) and obtain the output data vector X̂. of the new method with respect to these peaks. In addition

• Apply the HTLS algorithm to the output data vector X̂ the isolated and strong peak 8 was also considered in order
to estimate the parameters of the peak of interest. to establish how the method performs in those favorable

• Correct amplitude and phase of the peak of interest. circumstances. Each peak was extracted by means of the
same filter [2] with h Å 0.7, q Å 5, and p Å 10. The orderend
K of the filtered signal was set to 11. It is interesting to note

Note that instead of the HTLS algorithm a nonlinear least that the number of good runs for FI-HTLS is considerably
squares optimization method, such as VARPRO (13) or higher than the corresponding figure for HTLS as shown in
AMARES (12) , could be applied as well. As mentioned in Table 1. Table 2 presents the bias and variance associated
the Introduction, the latter method is recommended when to the estimates of the various parameters with the noise
additional prior knowledge is available. level sn set to 20 for peaks 1, 2, and 3 and to 60 for peak

8. The corresponding peak signal-to-noise ratio for the above
EXPERIMENTATION–TESTING values is 8.5, 14.5, 8.5, and 5 dB for peaks 1, 2, 3, and 8,

respectively. As far as the bias is concerned, no obvious
Quantification of a Simulated Signal

trends for any of the methods can be identified. On the
contrary this is not the case for the RMSE, as shown inThe algorithm proposed in this paper, namely FI-HTLS,

has been tested using a Monte-Carlo procedure and its per- Table 3. Despite the larger number of good runs, FI-HTLS

TABLE 2
Bias { Standard Deviation Values of the Parameter Estimates of Peaks 1, 2, 3, and 8

fk dk ak ck

kth peak Method (Hz) (Hz) (a.u.) (7)

1 HTLS 00.42 { 3.4 08.82 { 19.34 08.89 { 43.87 05.70 { 43.40
FI-HTLS 00.22 { 2.53 03.50 { 16.58 3.48 { 47.01 00.77 { 28.41

2 HTLS 0.11 { 2.06 18.64 { 25.07 85.19 { 98.30 03.68 { 29.18
FI-HTLS 0.34 { 1.88 0.52 { 21.29 4.30 { 83.57 9.30 { 23.37

3 HTLS 00.90 { 3.61 04.97 { 20.15 5.24 { 51.77 8.31 { 50.39
FI-HTLS 00.29 { 3.00 5.02 { 20.32 5.61 { 47.65 27.57 { 40.74

8 HTLS 00.15 { 0.37 00.89 { 4.83 00.71 { 23.93 3.08 { 4.87
FI-HTLS 0.02 { 0.34 00.95 { 4.50 01.06 { 23.53 00.63 { 4.39

Note. sn Å 20 for peaks 1, 2, and 3 and sn Å 60 for peak 8 (a.u., arbitrary units).

AID JMR 1315 / 6j28$$$143 01-22-98 15:01:15 maga



242 DOLOGLOU, VAN HUFFEL, AND VAN ORMONDT

TABLE 3
Root Mean Squared Error Values of the Parameter Estimates

of Peaks 1, 2, 3, and 8

kth fk dk ak ck

peak Method (Hz) (Hz) (a.u.) (7)

1 HTLS 3.40 21.13 44.45 43.46
FI-HTLS 2.53 16.86 46.90 28.27

2 HTLS 2.05 31.14 129.7 29.26
FI-HTLS 1.90 21.19 83.26 25.05

3 HTLS 3.69 20.60 51.63 50.68
FI-HTLS 3.00 20.82 47.71 49.00

8 HTLS 0.39 4.87 23.74 5.73
FI-HTLS 0.33 4.57 23.37 4.41

Note. sn Å 20 for peaks 1, 2, and 3 and sn Å 60 for peak 8 (a.u., arbitrary
units).

FIG. 3. FFT spectrum of 31P NMR signal of human brain.

always performs better (smaller RMSE) than HTLS. As a
general remark we should point out that the proposed method

remain unchanged. The noise level sn was set again equalperforms better in the case of strongly overlapping peaks
to 20.which should be treated separately. In other words, when

prior knowledge for two or more peaks is available it is best
Quantification of a Real-World NMR Signalto repeat the above algorithm as many times as there are

peaks of interest. Furthermore, as was mentioned before, Next a real-world 31P NMR signal is processed consisting
prior knowledge for the frequency of the peak of interest of 1024 samples in the time domain. The zero order phase
can be obtained from the FFT of the signal. Therefore, the c0 Å f0180/p Å 231.817 which can be determined from the
estimate of this frequency may not be exact and inaccuracies spectrometer phase settings is subtracted and only 1009 time
may occur with respect to its true value. For that purpose samples are considered starting from the 16th point of the
additional tests were carried out to evaluate the sensitivity signal. These 1009 samples are used for both HTLS and FI-
of the proposed method with respect to prior knowledge HTLS algorithms. All the estimated parameters are extrapo-
inaccuracies. As a matter of fact deviations of {7% up to lated to the time origin and the phases are corrected. Among
10% from the true frequency were assumed and the obtained the peaks of interest, NAD is a difficult peak to resolve
results show that the proposed technique is rather insensitive because of its low amplitude and its position on the wing
to small inaccuracies. Table 4 presents the obtained RMSE of a-ATP as shown in Fig. 3. One way of fitting the three
for the estimates of the parameters of peak 1 as a function peaks is to apply the HTLS algorithm to the original signal
of prior knowledge inaccuracies. Note that the figures which using an overestimated model order. For model orders up
were given in Table 1 regarding the number of good runs to 19 only the dominant a-ATP is fitted as a doublet while

NAD is not fitted at all. For higher model orders a-ATP is
still fitted and NAD is fitted as one exponential. Alterna-
tively, when FI-HTLS is used to estimate NAD there is noTABLE 4
need for an overdetermined model. NAD is fitted even whenRoot Mean Squared Error Values of the Parameter Estimates
the model order K of the filtered signal (using the same filterof Peak 1 When the Frequency Prior Knowledge Deviation from

the Exact Value Are 06, /6, and / 10 Hz [2] with h Å 0.7, q Å 5 and p Å 10) is as low as 6. It
should be noted that the same signal was considered in (9) ,

Deviation f1 d1 a1 c1 where a model of 14 or higher was needed to quantify NAD
in Hz Method (Hz) (Hz) (a.u.) (7)

even when all available knowledge for frequencies and
damping factors of the two a-ATP poles was used. Further-06 HTLS 3.40 21.13 44.45 43.46

FI-HTLS 2.63 16.66 42.82 28.99 more the amplitude ratio of the a-ATP doublet is known to
/6 HTLS 3.40 21.13 44.45 43.46 be 1.159. From Table 5, the ratios of the estimated ampli-

FI-HTLS 2.41 16.87 40.38 29.94 tudes using HTLS and FI-HTLS are 1.318 and 1.15, respec-
/10 HTLS 3.40 21.13 44.45 43.46

tively, implying that FI-HTLS offers better accuracy thanFI-HTLS 2.61 17.21 40.57 34.74
HTLS. Similarly the ratio of the damping factors is 1.18 and

Note. sn Å 20 (a.u., Arbitrary Units). 1.08 for HTLS and FI-HTLS, respectively. It is therefore
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Poles of Attraction (IUAP 4/02 & 24), initiated by the Belgian State,TABLE 5
Prime Minister’s Office for Science, Technology and Culture, and of aParameter Estimates of the Cluster of NAD and a-ATP Peaks
Concerted Research Action (GOA) project of the Flemish Community,of a Real-World 31P NMR Signal Measured from Human Brain
entitled ‘‘Model-Based Information Processing Systems.’’
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